

GCMTI RD-3:2022

利用高效液相色谱二极管阵列检测器 检测白凤丸的芍药苷含量

政府中藥檢測中心方法

利用高效液相色谱二极管阵列检测器检测白凤丸的芍药苷含量上

安全预防措施:本文中的步骤涉及致癌化学品、腐蚀性化学品和可燃溶剂,处理有关化学品时请采取预防措施,如戴上护眼及护手装备,如有需要可在抽气柜进行检测工作,以免吸入该等化学品气体。

1. 引言

1.1. 白凤丸是中国内地和香港普遍使用的中成药,常用于治疗血虚引起的各种疾病或妇科紊乱病。古代中药文献和《中华人民共和国药典》(《中国药典》)记录了白凤丸处方的主要成分。然而,香港市面上有不少白凤丸产品的配方经修改,成分不尽相同。其中,人参、当归、川芎、香附、白芍、地黄、黄芪、丹参和甘草等中药材常见于不同品牌的白凤丸产品。对应的化学指标成分如下:

中药材	常见化学指标成分
人参(Ginseng Radix Et Rhizoma)	人参皂苷
当归(Angelicae Sinensis Radix)	Z-藁本内酯
川 芎 (Chuanxiong Rhizoma)	Z-藁本内酯
香附 (Cyperi Rhizoma)	α-香附酮
白芍(Paeoniae Radix Alba)	芍药苷
地黄 (Rehmanniae Radix)	地黄苷
黄芪(Astragali Radix)	黄芪皂苷 IV
丹参(Salviae Miltiorrhizae Radix Et Rhizoma)	丹参酮和丹酚酸 B
甘草(Glycyrrhizae Radix Et Rhizoma)	甘草苷

1.2. 本方法载列利用高效液相色谱二极管阵列检测器就白凤丸样本内的芍药苷含量进行定性及/或定量检测时所涉及的步骤。

¹ 本方法旨在提供一种可靠的测试方法,在检测相关中成药中目标化学指标成分的含量时作质量控制之用。检测人员采用本方法时,有责任评估方法是否适用于拟测试的产品。

2. 试剂

注:除非另有说明,否则所有使用的试剂均属分析纯级别或同等级的试剂。

- 2.1. 甲醇, LC-MS级
- 2.2. 乙腈, LC-MS级
- 2.3. Milli-Q 超纯水
- 2.4. 芍药苷, CAS 编号: 23180-57-6
- 2.5. 提取溶剂

甲醇: 水(1:1 v/v)

- 2.6. 配制标准溶液
 - 2.6.1. 标准储备溶液 (浓度约为每毫升 1000 微克)

精密称取 10 毫克芍药苷置于 10 毫升的容量瓶,加入甲醇溶解并稀释至刻度标记,则可配制标准储备溶液。

2.6.2. 标准中间溶液 (浓度约为每毫升 100 微克)

把 1 毫升标准储备溶液转移至 10 毫升的容量瓶,加入提取溶剂(第 2.5.段)稀释至刻度标记,则可配制标准中间溶液。

2.6.3. 校准标准溶液 (校准标准品 CS1 至 CS5)

把适量标准中间溶液分别转移至若干 10 毫升的容量瓶,加入提取溶剂(第 2.5.段)稀释至刻度标记,则可配制一系列校准标准溶液。配制校准标准溶液所须的标准溶液建议分量表列如下:

校准 标准品	标准中间溶液 体积(毫升)	最终体积 (毫升)	芍药苷浓度 (微克/毫升)
CS1	0.5	10	5
CS2	0.8	10	8
CS3	1.0	10	10
CS4	1.5	10	15
CS5	2.0	10	20

2.6.4. 初始校正验证(ICV)标准储备溶液 (浓度约为每毫升 1000 微克)

精密称取 10 毫克来源与校准标准品不同的芍药苷置于 10 毫升的容量瓶,加入甲醇溶解并稀释至刻度标记,则可配制 ICV 标准储备溶液。

2.6.5. ICV 标准中间溶液 (浓度约为每毫升 100 微克)

把 1 毫升 ICV 标准储备溶液转移至 10 毫升的容量瓶,加入提取溶剂(第 2.5.段)稀释至刻度标记,则可配制ICV标准中间溶液。

2.6.6. ICV 标准工作溶液 (浓度约为每毫升 10 微克)

把 0.1 毫升 ICV 标准中间溶液转移至 1 毫升的容量瓶,加入提取溶剂(第 2.5.段)稀释至刻度标记,则可配制 ICV 标准工作溶液。

2.6.7. 加标标准溶液 (浓度约为每毫升 1000 微克) 参考标准储备溶液(第 2.6.1.段)。

3. 器具

所有玻璃量器用后均须尽快以丙酮及清洁剂清洗。用清洁剂清洗后, 玻璃量器随即分别以丙酮及水冲洗,之后再以丙酮冲洗两次。

- 3.1. 研磨机或搅拌机
- 3.2. 分析天秤,感量为 0.01 毫克
- 3.3. 1 毫升、10 毫升和 25 毫升的容量瓶
- 3.4. 100 微升、300 微升和 1000 微升的自动移液器
- 3.5. 离心机, 转速至少为 4000 转 / 分钟
- 3.6. 15 毫升的离心管
- 3.7. 涡旋振荡器
- 3.8. 超声波清洗器
- 3.9. 0.45 微米聚四氟乙烯过滤薄膜
- 3.10. 液相色谱玻璃样本瓶

- 3.11. 液相色谱柱: Inertsil ODS-4, 5 微米, 2.1 毫米×250 毫米, 生产商为 GL Sciences, 或具同等规格
- 3.12. 高效液相色谱二极管阵列检测器系统

4. 步骤

- 4.1. 配制样本
 - 4.1.1. 分析前使用研磨机或搅拌机对固体样本进行研磨及均质化处理。
 - 4.1.2. 精密称取 0.25 克白凤丸样本放进 15 毫升的离心管。
 - 4.1.3. 把 10 毫升提取溶剂(第 2.5.段)注入离心管, 然后将离心管涡旋振荡 1 分钟。
 - 4.1.4. 把装有混合样本的离心管放入超声波清洗器中以室温进行 20 分钟音波振动处理。
 - 4.1.5. 以 4000 转 / 分钟的转速对样本溶液进行 10 分钟的离心 处理并将上清液转移至 25 毫升的容量瓶中。
 - 4.1.6. 以 5 毫升提取溶剂(第 2.5.段)重复进行两次第 4.1.3.段至第 4.1.5.段所述的步骤。以同一个 25 毫升的容量瓶收集所有上清液,然后加入提取溶剂(第 2.5.段)稀释至刻度标记,则可得到样本溶液。
 - 4.1.7. 以 0.45 微米聚四氟乙烯过滤薄膜过滤样本溶液至液相色谱玻璃样本瓶中,便可用高效液相色谱二极管阵列检测。 注: 如果分析物的浓度不在校准范围内,请用提取溶剂 (第 2.5.段)进一步稀释样本溶液。
- 4.2. 高效液相色谱二极管阵列检测法
 - 4.2.1. 高效液相色谱二极管阵列检测器系统应按使用手册操作,并在下列的建议条件下进行分析。如要取得最佳的分离结果和输出信号,实际操作条件或须修订。实际的实验条件须记录在报表上。

4.2.2. 建议的高效液相色谱二极管阵列检测器操作条件:

液相色谱系统 : Waters Alliance e2695 高效液相色谱系统

或具同等效能的系统

液相色谱柱 : GL Sciences Inertsil ODS-4,

5 微米, 2.1 毫米 x 250 毫米或具同等规格

柱温度 : 25°C

流速 : 0.2 毫升 / 分钟

进样量: 10 微升流动相: A: 水

B: 乙腈

梯度 : 时间(分钟) A % B %

(,)		
0.0	95	5
5.0	90	10
20.0	80	20
30.0	10	90
35.0	10	90
35.5	95	5
45.0	95	5

检测波长 : 230 奈纳

4.2.3. 使用至少 5 个校准标准品(第 2.6.3. 段)校准高效液相色谱二极管阵列检测器系统。

4.2.4. 使用高效液相色谱二极管阵列检测器系统对空白对照样本、样本溶液、重复样本、加标样本和相关检查标准溶液进行分析。使用者可根据实验室既定的要求作质量控制。

5. 计算/结果分析

5.1. 鉴别要求

进行高效液相色谱二极管阵列检测时,应比较样本检测峰保留时间和校准标准品的平均保留时间,以鉴别样本中的目标分析物。样本检测峰保留时间不应与校准标准品的平均保留时间相差多于5%。

5.2. 在线性校准模式下就分析物绘画峰面积与浓度的图表,从而得出校准曲线。

5.3. 按下列方程式计算样本中分析物的浓度(微克/克):

分析物濃度(微克/克) =
$$\frac{C \times V \times D}{W}$$

C = 从校准曲线得出的分析物浓度(微克/毫升);

V = 最终体积(毫升);

D = 稀释比;以及

W = 样本重量(克)

6. 参考资料

- 6.1. 国家药典委员会:《中华人民共和国药典》2020 年版第一部,中国医药科技出版社。
- 6.2. Quantifying Uncertainty in Analytical Measurement, Eurachem / CITAC Guide CG4, 3rd Edition, 2012.
- 6.3. V. J. Barwick and S. L. R. Ellision, "VAM Project 3.2.1 Development and Harmonisation of Measurement Uncertainty Principles Part (d): Protocol for Uncertainty Evaluation from Validation data", LGC/VAM/1998/088 Version 5.1, January 2000.